Turok, Dark Matter, and the Issue of Telephone Games in Science

Chinese Whispers is a children’s game; according to the linked Wikipedia article, it’s called Telephone Game in American English, which better resembles the Italian telefono senza fili (literally, wireless phone).

Regardless of the name, which might stir up some discussion in its British version due to stereotype, the point is it’s a game in which information gets progressively distorted at each step—or I should rather say that opportunity for distortion at each step is embedded in the rules of the game.

Information is usually distorted by the environment (i.e. by the challenge of quickly whispering words one player to each other), but there’s always the chance that a player intentionally changes the message. This makes often the game a bit less funny (the funniest realizations—at least to me—are the ones in which the changes are unintentional), but results in no big deal; the message has no real utility.

In the real world, messages are usually important in being meant to have some effect on the recipient, and intentional distortion becomes an issue because the distortion is motivated by the hidden agenda of the player (or in general actor, in this context) that distorts the message.

In science this issues can rise in the way scientific results are presented to the general public, and also in the way results are presented to a public of peers; I will discuss two recent examples that bothered me a bit.

The first example is the popular book The Order of Time by Carlo Rovelli. In the book, Rovelli argues essentially that time is a sort of emergent property rather than a fundamental entity. The book has been followed by a series of interviews and articles in the press, which helped popularize it and certainly pumped up sales.

The book—and the general attitude shown in press articles and interviews—creates huge harm, though, because the notion that sticks with the layman is precisely that time does not exist. While this is certainly an interesting theory, worth discussion and scientific exploration (if feasible), it is a theory. A fancy, interesting theory that is not supported by any evidence whatsoever, at this moment in time (pun intended).

I think that selling (because the issue here is selling) a theory as if it was a fact is seriously damaging both the public and the community, with the aggravating factor that the public is defenseless; the public just trusts whatever is written in a popular book or in a press article, regardless of the truth—as the Trump campaign taught us. Furthermore, unfortunately the general public does not go and check more informed reports such as an article from Nature which points out that the theory is just Rovelli’s theory and that the layman should not buy the theory as if it was the truth.

If you think that I am exaggerating, consider that I am one of the administrators of what is probably the major Italian Facebook group on outreach on the topic of Quantum Mechanics, Meccanica Quantistica; Gruppo Serio; every couple days we have users that keep posting their thoughts “on the fact that time does not exist”, to the point that we stopped allowing those posts to pass through our filters. When we still accepted those discussions, I have been able to experience firsthand that these people have read the book (or a press article about it) and have taken home the message that the state of the art of scientific knowledge is that time does not exist. And this is very bothering. I think Rovelli messed up very badly in this, and I have the impression (I hope the incorrect impression) that he is unwilling or not caring about correcting this mistake.

Rovelli’s book is not the only example of a book that does a disservice to outreach by projecting the theory or the biases of the author into the general public; another recent example would be the book (and blog post about FCC) by Sabine Hossenfelder in which she claims that a new particle collider would be a waste of money, but I think that others have already written extensively about the topic, so I won’t delve into the topic in this blog post (I already did on Twitter, though), and my second example won’t be Sabine’s book.

My second example will be a sneakier example I have assisted to last week in a seminar in my institution, Université catholique de Louvain. In the context of the assignment of some PhDs honoris causa to renown scientists, Neil Turok has been invited and gave a couple lectures. One lecture was to the general public, and I missed it because of other commitment; you can find the full video of it in my institution’s website. The second lecture, the one I will focus on, was to a semi-general public; not only researchers like me from the CP3 (Centre for Cosmology, Particle Physics and Phenomenology—kudos for centre, Oxford comma is missing though), but also bachelor and master students in Physics.

A seminar for specialists is pretty much an open field, where it’s assumed that the spectators will be actively engaged and will critically evaluate any bit of information transmitted by the speaker.

A lecture with bachelor and master students—who were encouraged to participate and make questions—is a more delicate scenario, in which I would argue that you want to make sure that everything will be communicated with the necessary caveats. Either well-established theories should be presented, or new, bizarre, untested theories; in the case of the latter, there should be ample warnings about the theories not being part of the scientific consensus. I am not saying that new/bizarre/untested theories should not be presented; on the contrary, it is good for the formation of the critical mind of the students that debate is stirred up and that exciting possibilites are presented to them. What I am saying is that such possibilities should be presented as such, and not as the unquestionable truth; here is where I think Turok messed up pretty badly.

The lecture was about a CPT-symmetric universe; a couple slides into the talk, he presented a slide in which he wrote an equation and outlined the different components and the scientists that solved those pieces of the puzzle. There was an almost invisible (dark violet on black) bit of the equation that I was not able to read but that turned out to be pretty crucial; he claimed that he used to put disclaimers about that piece of the equation, because it referred to dark matter, but that recently he removed the disclaimer because that part of the puzzle has been solved.

At that point, I kind of woke up, because to this day we are pretty far from being able to state that “we solved Dark Matter”.

It became clear a few slides later that what he meant is that his theory is that Dark Matter is constituted by right-handed (RH) neutrinos, and that consequently the standard model plus right-handed neutrinos is enough to explain all the universe.

He then went on to state that competing theories such as freeze-out and freeze-in are full of ad-hoc assumptions, whereas his theory was simple and elegant; he even threw in the middle some paternalistic comments saying that in astrophysics/cosmology lately people just produce bad papers for the sake of it, whereas he prefers simple solutions based on works from 50 years ago.

Now, it might be true that some people produce bad papers just for the sake of it, and it might be true that going back to the roots of a discipline can result in ideas with a newly found strength and solidity. But using this argument to bash at competing models seems to me a bit arrogant and uncalled for. Particularly in front of undergraduate students.

During the Q&A, a couple colleagues of mine argued on two different fronts; one argued that freeze-in mechanisms—contrary to what stated by Turok—do not assume a huge number of new fields and ad-hoc assumptions. I am no expert on astrophysics, but we had in the past weeks two or three seminars about freeze-out and freeze-in mechanisms at CP3, and I am pretty sure my colleague was right; yet, Turok dismissed him basically saying that he was sure my colleague was wrong, and the moderator in the end had to use the traditional diplomatic let’s continue discussing this during the coffee break before things went awry.

The other colleague argued that the “very simple and standard-model only” model by Turok assumed not just the Standard Model but also right-handed neutrinos, to which a small exchange followed about whether RH neutrinos can be considered practically-Standard-Model or not. The discussion dragged on a bit, and at some point Turok admitted—although very en-passant—that also his model is affected by totally ad-hoc assumptions such the Z2 symmetry that makes one and only one of the RH neutrinos stable. And yes, that assumption is totally ad-hoc and is apparently the only way in which the theory can explain why of all RH neutrinos only one should be stable and give rise to Dark Matter. Again, I think that while it’s healthy that students are exposed to debate and to new ideas, the way in which the theory has been presented before the critics has been very problematic.

Screenshot from 2019-02-12 22-27-35
Screenshot from the Turok fandom wiki

Summarizing, I think our duty as scientists is to give both the public and the students the most objective picture about whatever new theory we fancy at the moment—even if we ourselves devised that theory.

It is good to expose the public to some degree of the professional debate about some topics—although it probably depends on the topic; debate about CPT has not the same impact on the layman as a debate about black holes—remember when people believed the LHC would have destroyed the Earth?—or vaccines.

However, when speaking to—or writing for—people that have not the capabilities of critically sieving through information, we should be very careful to not misrepresent the difference between the current scientific consensus and yet untested theories.

After all, not everything is about Turok (the Neil); the image above teaches us that Dark Matter is a pretty delicate issue in Turok (the game) as well 😀